How Can We Help?
You are here:
< Back
PortalsTechnologyEngineering

The Engineering Portal

The steam engine, the major driver in the Industrial Revolution, underscores the importance of engineering in modern history. This beam engine is on display in the Technical University of Madrid.

Engineering is the practice of using natural science, mathematics, and the engineering design process to solve technical problems, increase efficiency and productivity, and improve systems. Modern engineering comprises many subfields which include designing and improving infrastructure, machinery, vehicles, electronics, materials, and energy systems.

The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied mathematics, applied science, and types of application. See glossary of engineering.

The term engineering is derived from the Latin ingenium, meaning "cleverness". (Full article...)

Engineers, as practitioners of engineering, are professionals who invent, design, analyze, build and test machines, complex systems, structures, gadgets and materials to fulfill functional objectives and requirements while considering the limitations imposed by practicality, regulation, safety and cost. The word engineer (Latin ingeniator, the origin of the Ir. in the title of engineer in countries like Belgium and The Netherlands) is derived from the Latin words ingeniare ("to contrive, devise") and ingenium ("cleverness"). The foundational qualifications of a licensed professional engineer typically include a four-year bachelor's degree in an engineering discipline, or in some jurisdictions, a master's degree in an engineering discipline plus four to six years of peer-reviewed professional practice (culminating in a project report or thesis) and passage of engineering board examinations. (Full article...)

Featured article - show another

  Featured articles are displayed here, which represent some of the best content on English Wikipedia.

Tungsten arc welding

Gas tungsten arc welding (GTAW, also known as tungsten inert gas welding or TIG, and heliarc welding when helium is used) is an arc welding process that uses a non-consumable tungsten electrode to produce the weld. The weld area and electrode are protected from oxidation or other atmospheric contamination by an inert shielding gas (argon or helium). A filler metal is normally used, though some welds, known as 'autogenous welds', or 'fusion welds' do not require it. A constant-current welding power supply produces electrical energy, which is conducted across the arc through a column of highly ionized gas and metal vapors known as a plasma.

The process grants the operator greater control over the weld than competing processes such as shielded metal arc welding and gas metal arc welding, allowing stronger, higher-quality welds. However, TIG welding is comparatively more complex and difficult to master, and furthermore, it is significantly slower than most other welding techniques.

TAG welding was the name given in the early 1970's to the then novel and revolutionary method of rod welding previously problematic metals. TAG welding was then the use of a tungsten tipped arc creating welding machine. The tip was centred in shroud that fed argon gas around tungsten tip to prevent the composition of the weld becoming oxidised and fragile. TAG welding used rods of a metal suitable for the material to be welded permanently together. The rods could be a metal coated in oil to prevent the rod oxidising if needed or in more complicated welding of metals the rod would be coated in a "flux" that was not an active flux but a method of protecting the welding rods from oxidisation during storage (the major examples of this were rods for welding; pure aluminium, duralumin, magnesium/aluminium alloy and stainless steel rods used for repairing ultra high grade carbon steel as in WW2 Sherman tanks). At this time the most prevalent use of TAG welding is in the production of higher end aluminium alloy bicycles, these welds are clearly visible as ripples in the welded joint. Other than mostly bicycle production TAG has been surpassed by the use of tungsten alloy tips and argon gas combined with other inert gasses. TAG welding rods are now highly specific project metal alloy rods or more frequently mass production flexible "flux" cable/wire fed drum machines. These developments have rendered the TAG name as not specific and has fallen out of favour although the basic revolutionary process remains the same.

Meta TIG welding is most commonly used to weld thin sections of stainless steel and non-ferrous metals such as aluminium, magnesium, and copper alloys.

A related process, plasma arc welding, uses a slightly different welding torch to create a more focused welding arc and as a result is often automated. (Full article...)

Did you know - show different entries

Selected image - show another

Photograph of a Vickers hardness tester
Photograph of a Vickers hardness tester
Credit: User:Tariqabjotu
The Vickers hardness test was developed in 1921 by Robert L. Smith and George E. Sandland at Vickers Ltd as an alternative to the Brinell method to measure the hardness of materials. The Vickers test is often easier to use than other hardness tests since the required calculations are independent of the size of the indenter, and the indenter can be used for all materials irrespective of hardness. The basic principle, as with all common measures of hardness, is to observe the questioned material's ability to resist plastic deformation from a standard source. The Vickers test can be used for all metals and has one of the widest scales among hardness tests. The unit of hardness given by the test is known as the Vickers Pyramid Number (HV) or Diamond Pyramid Hardness (DPH). The hardness number can be converted into units of pascals, but should not be confused with pressure, which also has units of pascals. The hardness number is determined by the load over the surface area of the indentation and not the area normal to the force, and is therefore not pressure.

Good articles - load new batch

These are Good articles, which meet a core set of high editorial standards.

General images

The following are images from various Engineering-related articles on Wikipedia.

Articles

WikiProjects

Topics

Subcategories

Related portals

New articles

Extended content
This list was generated from these rules. Questions and feedback are always welcome! The search is being run daily with the most recent ~14 days of results. Note: Some articles may not be relevant to this project.

Rules | Match log | Results page (for watching) | Last updated: 2024-06-12 20:14 (UTC)

Note: The list display can now be customized by each user. See List display personalization for details.

















Things you can do

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

  • Commons
    Free media repository
  • Wikibooks
    Free textbooks and manuals
  • Wikidata
    Free knowledge base
  • Wikinews
    Free-content news
  • Wikiquote
    Collection of quotations
  • Wikisource
    Free-content library
  • Wikiversity
    Free learning tools
  • Wiktionary
    Dictionary and thesaurus
Discover Wikipedia using portals

Purge server cache

Categories
Table of Contents