Tin(II) oxalate is an inorganic compound, a salt of tin and oxalic acid with the chemical formula SnC
2
O
4
.[2] The compound looks like colorless crystals, does not dissolve in water, and forms crystalline hydrates.

Synthesis

Effect of oxalic acid solution on tin(II) oxide :

Tin(II) oxalate can also be obtained by using tin(II) chloride and oxalic acid.[3]

Properties

Tin (II) oxalate forms colorless crystals.

Insoluble in water and acetone. Soluble in dilute HCl,[4] methanol, and petroleum ether.[5]

Forms crystal hydrates of the composition SnC2O4n H2O, where n = 1 and 2.

Decomposes on heating:

Applications

  • Tin oxalate is used as a catalyst in the production of organic esters and plasticizers.[4]
  • It is used for dyeing and printing fabrics.
  • The compound is also used in stannous oral care compositions.
  • Few studies have reported on the use of tin(II) oxalate as an anode material for rechargeable lithium batteries.[6]

References

  1. ^ "Tin Oxalate". American Elements. Retrieved 5 August 2021.
  2. ^ "Tin(II) oxalate 98% | Sigma-Aldrich". sigmaaldrich.com. Retrieved 5 August 2021.
  3. ^ Nagirnyak, Svitlana V.; Lutz, Victoriya A.; Dontsova, Tatiana A.; Astrelin, Igor M. (26 July 2016). "Synthesis and Characterization of Tin(IV) Oxide Obtained by Chemical Vapor Deposition Method". Nanoscale Research Letters. 11 (1): 343. Bibcode:2016NRL....11..343N. doi:10.1186/s11671-016-1547-x. ISSN 1556-276X. PMC 4960077. PMID 27456501.
  4. ^ a b "814-94-8 - Tin(II) oxalate - Stannous oxalate - 14113 - Alfa Aesar". Alfa Aesar. Retrieved 5 August 2021.
  5. ^ "Registration Dossier - ECHA". European Chemical Agency. Retrieved 5 August 2021.
  6. ^ Park, Jae-Sang; Jo, Jae-Hyeon; Yashiro, Hitoshi; Kim, Sung-Soo; Kim, Sun-Jae; Sun, Yang-Kook; Myung, Seung-Taek (9 August 2017). "Synthesis and Electrochemical Reaction of Tin Oxalate-Reduced Graphene Oxide Composite Anode for Rechargeable Lithium Batteries". ACS Applied Materials & Interfaces. 9 (31): 25941–25951. doi:10.1021/acsami.7b03325. ISSN 1944-8252. PMID 28718628. Retrieved 5 August 2021.